Differential Equations II Cheat Sheet (A Level Only)

Solving Homogenous 2nd Order Differential Equations with Constant Coefficients **Using the Auxiliary Equation**

A homogeneous 2nd order differential equation with constant coefficients is a differential equation of the form:

$$\frac{d^2y}{dx^2} + a\frac{dy}{dx} + by = 0$$

Where a and b are constants. Notice a co-efficient of $\frac{d^2y}{dx^2}$ can be handled by dividing the whole equation by it.

These equations can be solved by first guessing a solution of the form $y = e^{\lambda x}$, where λ is a constant to be determined. Then find the first and second derivatives and substitute into the differential equation:

$$\frac{dy}{dx} = \lambda e^{\lambda x}, \qquad \frac{d^2 y}{dx^2} = \lambda^2 e^{\lambda x} \Rightarrow \lambda^2 e^{\lambda x} + a\lambda e^{\lambda x} + b e^{\lambda x} = 0$$

Then divide both sides by $e^{\lambda x}$ to obtain the auxiliary equation shown below. This can always be done as $e^{\lambda x} \neq 0$ for all $\lambda, x \in \mathbb{C}$.

 $\lambda^2 + a\lambda + b = 0$

As with any quadratic, there are three cases for the types of roots which can be classified using the discriminant:

a) $\Delta = a^2 - 4b > 0$	Distinct real roots: λ_1 , λ_2
b) $\Delta = a^2 - 4b = 0$	Repeated roots: λ
c) $\Delta = a^2 - 4b < 0$	Complex roots: $\lambda_1 = \alpha + \beta i$, $\lambda_2 = \alpha - \beta i$

Distinct Real Roots

In an equation with distinct real roots λ_1 , λ_2 the general solution takes the form $y = Ae^{\lambda_1 x} + Be^{\lambda_2 x}$ where A and B are arbitrary constants.

Example 1: Consider the differential equation $3\frac{d^2y}{dx^2} + 6\frac{dy}{dx} - 24y = 0$

a) Find the auxiliary equation.

b) Hence state and verify the general solution.

a) Write differential equation into correct form by dividing through by 3.	$\frac{d^2y}{dx^2} + 2\frac{dy}{dx} - 8y = 0$
Write auxiliary equation using the method demonstrated above. Notice the co-efficient of n^{th} order derivative is the same as the n^{th} power of λ .	$\lambda^2 + 2\lambda - 8 = 0$
b) Factorise the auxiliary equation to find the roots.	$(\lambda - 2)(\lambda + 4) = 0 \Rightarrow \lambda_1 = 2, \lambda_2 = -4$
Write general solution.	$y = Ae^{2x} + Be^{-4x}$
Verify by finding 1 st and 2 nd derivatives and substituting into the original differential equation.	$\frac{dy}{dx} = 2Ae^{2x} - 4Be^{-4x}, \qquad \frac{d^2y}{dx^2} = 4Ae^{2x} + 16Be^{-4x}$ $3(4Ae^{2x} + 16Be^{-4x}) + 6(2Ae^{2x} - 4Be^{-4x}) - 24(Ae^{2x} + Be^{-4x}) \equiv 0$

Repeated Roots

In an equation with repeated roots λ , the general solution takes the form $y = (A + Bx)e^{\lambda x}$, where A and B are arbitrary constants. This is because in the case of a repeated root, the other solution can be obtained by multiplying through by x as justified below.

Proof 1: For the differential equation $\frac{d^2y}{dx^2} - 2a\frac{dy}{dx} + a^2y = 0$, where $\lambda = a$ is a repeated root of the auxiliary equation for a constant a, $y = xe^{\lambda x}$ is a solution.

First notice that the auxiliary equation of all homogeneous 2nd order differential equations with repeated roots $\lambda = a$ can be written in the same form.	Auxiliary equation:
Find 1st and 2nd derivatives of $y = xe^{\lambda x}$.	$\frac{dy}{dx} = e^{\lambda x} + \lambda x e^{\lambda x} = e^{\lambda x} (1)$
Verify by substituting into the original differential equation. Recall $\lambda = a$ and $(\lambda - a)^2 = 0$.	$\lambda e^{\lambda x}(2+\lambda x)-2a\Big(e^{\lambda x}(2+\lambda x)-2a\Big)$

Complex Roots

Notice that the complex roots are a conjugate pair as they are the solutions of a quadratic with real coefficients. For an equation with complex roots $\lambda_1 = \alpha + \beta i$, $\lambda_2 = \alpha - \beta i$, although the form of the general solution for distinct real roots is valid, Euler's formula can be used to rewrite the general solution as $y = e^{\alpha x} (A \cos \beta x + B \sin \beta x)$.

Proof 2: Given that $y = Ce^{\lambda_1 x} + De^{\lambda_2 x}$ and $\lambda_1 = \alpha + \beta i$, $\lambda_2 = \alpha - \beta i$, then $y = e^{\alpha x} (A \cos \beta x + B \sin \beta x)$ where A, B, C and D are constants.

Substitute λ_1 and λ_2 into $y = Ce^{\lambda_1 x} + De^{\lambda_2 x}$ and factorise out $e^{\alpha x}$.	$y = Ce^{(\alpha+1)}$
Use Euler's formula to rewrite $e^{\beta ix}$ and $e^{-\beta ix}$. Recall $\sin -\beta x = -\sin \beta x$.	$y = e^{\alpha x} (\mathcal{C}($
Collect terms and rename co-efficients. A = C + D and $B = (C - D)i$.	

Example 2: Solve the differential equation $\frac{di}{dz}$ a) $\mu = 1$ b) $\mu = 5$ c) $\mu = 0$	$\frac{dy}{dx} + 2\frac{dy}{dx} + \mu y = 0$ when
a) Write auxiliary equation.	$0 = \lambda^2 + 2$
Substitute into the general solution for repeated roots.	
b) Write auxiliary equation.	$0 = \lambda^2 + 2\lambda + 5 = (\lambda - 0)$
Substitute into the general solution for complex roots.	y = e
c) Write auxiliary equation.	$0 = \lambda^2 + 2\lambda$
Substitute into the general solution for distinct real roots.	

AQA A Level Further Maths: Core

$$0=\lambda^2-2a\lambda+a^2=(\lambda-a)^2$$

$$(1 + \lambda x), \qquad \frac{d^2 y}{dx^2} = \lambda e^{\lambda x} (1 + \lambda x) + \lambda e^{\lambda x} = \lambda e^{\lambda x} (2 + \lambda x)$$

 $(1+\lambda x) + a^2 (xe^{\lambda x}) = e^{\lambda x} (2(\lambda - a) + x(\lambda - a)^2) \equiv 0$

 $(+\beta i)x + De^{(\alpha - \beta i)x} = e^{\alpha x} (Ce^{\beta ix} + De^{-\beta ix})$

 $(\cos\beta x + i\sin\beta x) + D(\cos\beta x - i\sin\beta x))$

 $y = e^{\alpha x} (A \cos \beta x + B \sin \beta x)$

$$2\lambda + 1 = (\lambda + 1)^2 \Rightarrow \lambda = -1$$

$$y = (A + Bx)e^{-x}$$

$$-(-1 + 2i))(\lambda - (-1 - 2i)) \Rightarrow \lambda = -1 \pm 2$$

$$= e^{-x}(A\cos 2x + B\sin 2x)$$

$$\lambda = \lambda(\lambda + 2) \Rightarrow \lambda_1 = 0, \lambda_1 = -2$$

 $y = A + Be^{-2x}$

