Differential Equations II Cheat Sheet (A Level Only)

Solving Homogenous $2^{\text {nd }}$ Order Differential Equations with Constant Coefficients

Using the Auxiliary Equation
A homogeneous $2^{\text {nd }}$ order differential equation with constant coefficients is a differential equation of the form

$$
\frac{d^{2} y}{d x^{2}}+a \frac{d y}{d x}+b y=0
$$

Where a and bare constants. Notice a co-efficient of $\frac{d^{2} y}{d x^{2}}$ can be handled by dividing the whole equation by it.
These equations can be solved by first guessing a solution of the form $y=e^{\lambda x}$, where λ is a constant to be determined. Then find the first and second derivatives and substitute into the differential equation:

$$
\frac{d y}{d x}=\lambda e^{\lambda x}, \quad \frac{d^{2} y}{d x^{2}}=\lambda^{2} e^{\lambda x} \Rightarrow \lambda^{2} e^{\lambda x}+a \lambda e^{\lambda x}+b e^{\lambda x}=0
$$

Then divide both sides by $e^{\lambda x}$ to obtain the auxiliary equation shown below. This can always be done as $e^{\lambda x} \neq 0$ for all $\lambda, x \in \mathbb{C}$.

$$
\lambda^{2}+a \lambda+b=0
$$

As with any quadratic, there are three cases for the types of roots which can be classified using the discriminant:

a) $\Delta=a^{2}-4 b>0$	Distinct real roots: λ_{1}, λ_{2}
b) $\Delta=a^{2}-4 b=0$	Repeated roots: λ
c) $\Delta=a^{2}-4 b<0$	Complex roots: $\lambda_{1}=\alpha+\beta i, \lambda_{2}=\alpha-\beta i$

Distinct Real Roots

In an equation with distinct real roots λ_{1}, λ_{2} the general solution takes the form $y=A e^{\lambda_{1} x}+B e^{\lambda_{2} x}$ where A and B are arbitrary constants.
Example 1: Consider the differential equation $3 \frac{d^{2} y}{d x^{2}}+6 \frac{d y}{d x}-24 y=0$
a) Find the auxiliary equation.
b) Hence state and verify the general solution.

a) Write differential equation into correct form by dividing through by 3 .	$\frac{d^{2} y}{d x^{2}}+2 \frac{d y}{d x}-8 y=0$
Write auxiliary equation using the method demonstrated above. Notice the co-efficient of $n^{\text {th }}$ order derivative is the same as the $n^{\text {th }}$ power of λ.	$\lambda^{2}+2 \lambda-8=0$
b) Factorise the auxiliary equation to find the roots.	$(\lambda-2)(\lambda+4)=0 \Rightarrow \lambda_{1}=2, \lambda_{2}=-4$
Write general solution.	$y=A e^{2 x}+B e^{-4 x}$
Verify by finding $1^{\text {st }}$ and $2^{\text {nd }}$ derivatives and substituting into the original differential equation.	$\begin{gathered} \frac{d y}{d x}=2 A e^{2 x}-4 B e^{-4 x}, \quad \frac{d^{2} y}{d x^{2}}=4 A e^{2 x}+16 B e^{-4 x} \\ 3\left(4 A e^{2 x}+16 B e^{-4 x}\right)+6\left(2 A e^{2 x}-4 B e^{-4 x}\right)-24\left(A e^{2 x}+B e^{-4 x}\right) \equiv 0 \end{gathered}$

Repeated Roots

Wh repeated roots λ, the general solution takes the form $y=(A+B x) e^{\lambda x}$, where A and B are arbitrary constant . This is because in the case of a repeated root, the other solution can be obtained by multiplying through by x as justified below.

Proof 1: For the differential equation $\frac{d^{2} y}{d x^{2}}-2 a \frac{d y}{d x}+a^{2} y=0$, where $\lambda=a$ is a repeated root of the auxiliary equation for a constant a, $y=x e^{\lambda x}$ is a solution.

First notice that the auxiliary equation of all
homogeneous 2nd order differential
equations with repeated roots $\lambda=$
can be written in the same form.

Find 1st and 2nd derivatives of $y=x e^{\lambda x}$

Verify by substituting into the original differential equation. Recall $\lambda=a$ and $(\lambda-a)^{2}=0$.

$\frac{d y}{d x}=e^{\lambda x}+\lambda x e^{\lambda x}=e^{\lambda x}(1+\lambda x), \quad \frac{d^{2} y}{d x^{2}}=\lambda e^{\lambda x}(1+\lambda x)+\lambda e^{\lambda x}=\lambda e^{\lambda x}(2+\lambda x)$
$\lambda e^{\lambda x}(2+\lambda x)-2 a\left(e^{\lambda x}(1+\lambda x)\right)+a^{2}\left(x e^{\lambda x}\right)=e^{\lambda x}\left(2(\lambda-a)+x(\lambda-a)^{2}\right) \equiv 0$

Complex Roots

Notice that the complex roots are a conjugate pair as they are the solutions of a quadratic with real coefficients. For an equation with complex roots $\lambda_{1}=\alpha+\beta i, \lambda_{2}=\alpha-\beta i$, although the form of the general solution for distinct real roots is valid, Euler's formula can be used to rewrite the general solution as $y=e^{\alpha x}(A \cos \beta x+B \sin \beta x)$.

Proof 2: Given that $y=C e^{\lambda_{1} \alpha}+D e^{\lambda_{2} x}$ and $\lambda_{1}=\alpha+\beta i, \lambda_{2}=\alpha-\beta i$, then $y=\alpha(A \cos \beta x+B \sin \beta x)$ where A, B, C and D are constants.

Substitute λ_{1} and λ_{2} into $y=C e^{\lambda_{11} x}+$ $D e^{2 \lambda x}$ and factorise out $e^{\alpha \alpha}$.	$y=C e^{(\alpha+\beta i) x}+D e^{(\alpha-\beta i) x}=e^{\alpha x}\left(C e^{\beta i x}+D e^{-\beta i x}\right)$
Use Euler's formula to rewrite Recall sin $-\beta x=-\sin \beta x$.	$y=e^{\beta x}(C(\cos \beta x+i \sin \beta x)+D(\cos \beta x-i \sin \beta x))$
Collect terms and rename co-efficients. $A=C+D$ and $B=(C-D) i$.	$y=e^{\alpha x}(A \cos \beta x+B \sin \beta x)$

Example 2: Solve the differential equation $\frac{d^{2} y}{d x^{2}}+2 \frac{d y}{d x}+\mu y=0$ when a) $\mu=1$ c) $\mu=0$

a) Write auxiliary equation.	$0=\lambda^{2}+2 \lambda+1=(\lambda+1)^{2} \Rightarrow \lambda=-1$
Substitute into the general solution for repeated roots.	$y=(A+B x) e^{-x}$
b) Write auxiliary equation.	$0=\lambda^{2}+2 \lambda+5=(\lambda-(-1+2 i))(\lambda-(-1-2 i)) \Rightarrow \lambda=-1 \pm 2 i$
Substitute into the general solution for complex roots.	$y=e^{-x}(A \cos 2 x+B \sin 2 x)$
c) Write auxiliary equation.	$0=\lambda^{2}+2 \lambda=\lambda(\lambda+2) \Rightarrow \lambda_{1}=0, \lambda_{1}=-2$
Substitute into the general solution for distinct real roots.	$y=A+B e^{-2 x}$

PMTEducation

